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A ~“Vm~ OF BOUNDARY-LAKER

By Neal !I%tervin

SUMMARY

A concise nonmathematical review of the subject of boundary
layers is presented. The contents, albhou@ insufficient for kli~

eolu.tionof’specific yroblems, are suffi.cientfcm an fintroductim
to the mibject. A
detailed knowleue
can be obtained.

list of reference papers is given frcm %fiichthe
nece6sary for the solution of specific problems

The literature on the subJeot of bound.aru-layers contains so
many papers of varyin~ quality that it is difficult for a.newconzer

, to the subject to choose the papers that provide the maxhmm Gin in
lmowledge for tineeffort expended. Althou@ referancas 1 and 2 pro-
vide detailed reviews of boundary-layer theory: no short nonmathe-
matical summary is readily available.

The purpose of the present paper is to praviae a short sunzwwy
that contains exact or approximate information that iflbelievetito
be useful. The smmuary is confined to cases for which the physical
properties of the fluid are constant, that 2s, to incompressible
flow with no temperature effects. An introduction to boun@ry-l&~-er
literature is provided: and reference papers are listed from which
inl?ormaticmon subjects of special interest may be obtained.

The material presented.herein was ori.gi.nal~presented as a
talk at Wr@t Field, Dayton, Ohio:on September 26, 1~~.

BOUNDARY-LAYER TERMINOLOGY

E@nl)ols

P &ensity

u velocity component

v velocity component

paraU.el to surface

Porxwdicular to sm~ace
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distanue akmg surface frcm bad.i~ edge

distance normal to surface

Erbatiopremwe

coefficient of viecoeity

vehoity component
boundary lqyex

momentum thickness

parallel to surface at outer edge of

nczainalthickness Of boun&my @y@?
. .

En.Irfmeshearing @ress ,,

ratio of displacement thickness to mmmtm thickneep
()

5*

F

-c presfwre (H)2

‘“(%)(9”
II kkmlatic

,, . ..

()visco13ity H
P

U. fme-streem velocity

II

~
absolute m.gnltude of rate of change of U Itith x

“dx ..

Rx
()

u~x ~
Reynolds nmiber ~

0

“
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c chord

()170c
Rc Reynol&s number ~

T local sharing dress

‘1 mixing length I

i-

‘0
‘* = F

m exponent in fomula for 1)omdary-1.ayer velocity distri?mtion

% value of u at y,= e

R5
()
U6

Reynolds number ~

n exponent in formula.for variation of velocit: along suzzface

~!=&=J .,
dx

k constant in formula for va+dstion of velocity alonq suzzface

(1 )
t

U’v: =
1

tlQ$ca; U’v’ lit

o

u’ x-co?nponentof fluctuation velocity

Vf y-component of fluctuation velocity

t tme

K von K&&n’s universal constant
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11~
()

u~Reynolds number ~,

c hei@t of rou@ness particle

u angular velocity

a radius of disk

6* thiclmess of laminar sublayer

D constant in surface-frictionforamla

6 constant in surfsce-friotion formzil.a

h ()82 dVPohlhausen shape parameter — —
“o dx

c inflow velocity

NACA TN NO. 13@4

A boundary layer mqv be defined as a re@on in the flow field
in whfch the viscous forces in the equation of mot!.on are not all ‘
negligible. (See appendix.) For flow over bodios at the Roynol.ds
nwnbfx?s encountered.in applied aerodynamics, ‘there@cm in which the
viscoue forces are not negligible is confined.to q thin la,yerOX
fluid.nexh to tiIe surface, the I%andtl bountiry lqyer (referenco l),
The viscous forces are confined to this thin bcmndsq’ layer because
the space rates of change of shearing stress are kr~e onou@I to
produce other than negligible VISCOLW forces on~in the thin surface
layer of fluid. In the absence of solid boundaries, hound,arylayers
occur where streams of fluid that move with different velocities are
in contact; for example, Jets and wakes. Boundar: layers may be
divided into two classes, laminar and turbulent.

A landnar boundary layer is one in which the paths bf the
particles of fluid never cross one another; the nei@Loring layers
of fluid #.Zde over one another as if the:.were solid.sheets ant.all
interchan~e of momentzunhetwoen adjecent layers takes place only by
mdecuhr motions. A turbulent boundary layer, oa tineothor hind,.
is me in which the yaths of the particles of fluid.cross one another
and.in tiich almost all of the lnterchen3e of’momentum between
8dJacent layere is caused by the &regular motion of small fluid
maeaes.

.

.

.

.
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XiIorder to diBcuss the boundary layer it is first kecmsary M
aefine the terms velocity profile, Ewface friction; bwnfiry-J-Syer
thickness, and separation yoint. A velocity profile 5.sthe curve
that gives the distrilnrkbn of the component of velocity pem U.el to
the SLUfaCe with distance normal to the surface (fi~. 1). in bc?UmlRry-
layer theory the velocit:~cmqponezrtparallel to the mzrtace is eq?ld
to the mmgnitude of the total velocity becauss the ‘~elociti;c~l?~nent
normal to the surf%ce is negl.i,~ble. The s~:a co friickt.o?l 3S the
shearing stress between the fluid.and tliesolid body.

The thickness of the bound~y layer may be defined as the dis-
tance, in direction normal to,the s.wface, at wld.chtiietotal prcmi-

eure () ‘w differs by an arbitzzw$rECZfillanornt from the totalp+—
2

pressure of the undisturbed Flow. At dietances fron the body weater
than 8, the flow is asmmil to %e invisci& ~f’ig~~] ●

The separation point is the point on the svrfaco of the IIodyat
which the surface friction is zero. ~patlwan of the point tlfie&lrec-
tion of flow in ‘to bowmlary layer next to the scrface is downstream+
and dcwwtream C& the point the direction of flow in the boundary
layer next to the sur$%ce is uystreom (fi~. 3}4

lMM13?m BmImRY L&’.

Methods cf Calculwticn

,,

By the use of ‘&e bomdary-lqer cquat:.ons of motion ‘toCether
with the condltiong that we solutions of.the equations”must satisfy
at the inner and outer edges of the boundar~ la.~orthe churact6r-
istics of the laminar tioundary layer over a hody may be determined
completely when the veloctty distribution ovar the body outside the
boundary layer is known and the flow is euch that the bouwdar~--2&fer
approximations are applicable. In order to avoid the pure~v nxiVQe-
matical difficulties associated wi+~ the exact Iwtlwd. of soh.tion,
various approximate methods for the ccznputationof the velocity
profile, surface friction, bounda~f-1.aye&thiclmess, and sep.ara%lcm
point have been developed.

Von I&m& nwmentwn eqMtion. - The voiiKa$nE’nmomentum equa-
tion (reference 3) results fram the application of.the momentum
theorem to botida~-layer flow and makes It possib3e to compute tile
boundary-layer thlclme~s over a body with an ~b~ti-ary pressure dis-
tribution whether the flow in the boundar:’layer is laminar or
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turb~eht if theIyari~t:on of
and surface frlotion over the

NACA TN No. ‘3384 “

the-lxwndar$~~yer velocity profile
body is knomb

.

.

!l!heeq~tion is obtainable by two methods: by ~pyiyti~ the
momentum princiyle .toa box, the lower side of wl@ch ez%ends for an
infinitesimal distance abn~ the solid surface, the up_pors~de.of
which is the nominal thiclmess of the boundar~rlayerl end tho s~dGs of
which are planes perpendicular to the bodT mmfa co (appendixj, or
by lnte~atin~ the boundary’layer equation of mot>on,with reuyect
to the distance normal to the sw?face. Tinevon K&rmen momentum
equation contains the same assumpti OIIEIas the ?randtl bounlaz”y-layer
equations [appendix) and may be wbiiten as (appendix)

~.”= $* Q+TO
(3x ax

(1)
.

The qyantity O, where .,
,,

‘+’=”U[8”-F’”
is called the mcmmntum thicknees and is a lengbh of such magaltude

that p#O represents the difference between the rate of momentum
flow that would exist if the mass flowdng throu@l a l.)oundary-layer
cross section were no-vinewith the velocity at the boundary-layer ‘
edge and tl& actual rate of momentum flow throu@ the boundary-layer
cross section.

is cdbd the displacement thickness and is a lengtiiof mch mM@ -
tude that fluid flowing throu@ it wi~ the boundary-layer edge
velooity U produces a rate of mass flow equ&1 “tothe dif~erence
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between the rate of mass flow which wodd efist if the fluid through
a cross section of the boundary ~yer were flaring wtth the bcmndary-
layer edge velocity and the actwl rate of mass flow through the
cross sectim of the boundary I-ayere

Equation (1) indicates that the effect of prei?euregradtent on
the nnnentum defect of the fluid flowing throu@h the boundary layer
is directly proportional to the displacement thickness of the boundary
layer.

For use in the Pohlhausen mA&cdFand for the computation oi’
boundary-layer thicknesses, the von Kmm&n equation is written as

(2)

Pohlhawen’s method.; The ~ohlhause~ methoti,an approximate
method based on the von lQirm6nmomentmn eqpation has been widely
used and is usef’ulfor obtaining qualitative in220rmation. The
purpose of the Pohlausen method {reference 1, yp. 10d-112) 2s to
ccmpute the characteristics of the la-r boundary layezzin two-
dimensional flow when the pressure distribution outside the bmu@ry
layer is a lcmwn function of the distance along the mrface. The
method is based on the assumption that all kqxhxm bounda~-leyer
velocity profiles are given by a fourth-degree polyncxmhl. Pohlhausen
chose a fourth-de~ee po~omial. after trying first-, second-, and
third-de&ree yolyzxxuhls, because the fourth-degree polynomal gave
better agreement between his methcd.and the exact Blaslus solution
for the velocity profile and skin friction on a flat ~late than
‘polynomialsof lower degree. The coefficients of’the fourth-degcee
polynomial are ohoeen to rrdcethe equation tor the velocity ~ofile
satls~ the boundary-layer equation ●f motimn at the tier and outer
●dges of the boundary layer. The result.is an eq~tion fnr %he

The velocity profiles are thus a single-parameter femd.ly of’ curvee
in which the paremter X &eApeadson the previous hist~ry of the
boundary layer only through the thiclmess 5. The parameter X is

~ dp—

proportional to - -# (qpmdix), the ratio I& the unbalanced
o
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horizonf,alpressure force actin~ on the small box wed ~Q derivin~
the vonK&m& momentwq equation to the s+earing ~trass acting Qn
the eurface side of the bcx. The parameter k can be show to h
independent of Rc (appendix.).For the interior of the boundary

layer the equation of motion is ignored, liutth~ von K&m&l momentum
equation ia setisfied, By mtisfying the”von Kmm&n nmmentum equa-
tion, the distribution over the body surface of the veloctty profile,
boundary-hyer,.thicWes8,,surface friction, end surface-pressure
distribution is made consistent with the ~meatm theorem,

To obtain the boundary-layer characteristics over the suzi%cc,
the differential equation resultin~ from the substitution of the
equation for the velocity profile into the son K&m6n equation i~
sclved (reference 1, pp. 108-1I2). The method does not suffer
from serious j.naccwacies for O ~h < U. For.flow over a flat
plate$ h = O, the skin fHctton differs from the exact value by

only ~ yercent. When, however, the yressure outside the boundary

layer rises in the dfrectio~ of’flow, ‘h < O; the-method 3ecmaes
inaccurate. 4JIinvesiii~tion of the reason for the inaccuracy of
the Pohlhausen method preference 4) leads to the conclusion tlnat--an
inherent characteristic of thg IJMthodis the late ~edlction. of the
separation poiht became the f’our’t.h--de@eepolyncmialflor the velocity
distribution is not a good mathematical substitute for.the actul ~
velocity profiles obtained in the o~ct soluti,ohs. Althcugh the
method is inaccurate in an adverse pressure gradient, it my often
be used to obtain raptQv qualitative results mncerninf~ tileeffects
on the vel.oci.typrofile and su~face friction of.changes.In the pres-
sure distribution or bouridary-layerthickness (apjendi~}. The metlmd
is an example of the fact that a thecmywhichi~ores the.eq.uattonof
motion in the interior of the boundary hyer and therefore ne@ects
the acceleration terms in the equation of motion will tike the
boundary-layer profile dependent on only the 100al condt$ions. A
complete theory would make the space rate of cha~ of boundar~-
layer profile, rather than the profile itself, depent on the local
conditions.

Falkner’s metl@d.- The purpose of~altier ’srnethod.(references)
and ~) is to provi~e for the practical computatlan of the surface
friction, momentum thickness, and M.sylacmentthlckr.ess of,any two-
dimensional laminar lxnindarylayer. The method i= based on existtn~
tables,of-solutj.onsof the bo~dary-lsyer equation for Epecial types ‘
Of pressuxe distribution (reference 4). In order to obtain the

series from the stagnation point v%th x as the Independent ~mriable.

.

.

,.
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.

m

.

.

The coefficients in the
with respect to x and
complete boundary-layer
help of known solutd.cns

Taylor ser:es are the deriwtiv& of ~
were obtained from the derivatives of the
eqyatioti.at the staprbion Poin>j tith the
of the special eqmtion (reference 4) to

Whi-ti the complete equation redu~es.in &-e vicl&ty of the EItagna-
tlon point. Tileseries e~nsion for @ was then ?Wtea to a

“ixx’
special type of pressure distribution given by TJ= Ho
where X* is a constant. The sep&ation@.nt (~ = 0) f~r the
spectal t~e of pressure”dlstributton was detmmir.ed b~ w~ing the
Taylor series eqyxuxions for ~. After the separation po:nts ware
colnputed,the solutions for different pressure distributions nf the
same family were tabulated an~ completed; these tables form the
basis of the ’s~lifiedmethcd of calculaticm (reference 5).

The assumptions inl!?alher”’ssimplflfiedmethod are: (1) The
special form of’the botiary-layer equaticm of motion represents
the conditi&s of flow nem the stagn+ion point with good accurecy.
(2) The surface friction at ~ point is given accurately by replacing
the actual pressure distributionby one of tileparticular fmly of
pressure distributions; a new presswe d.retributionis chosen f~r

each point. (3) The relation H . # is a functton onlJJof ~,

and this funct:cm can bo determined from solutions of the bor@ary-
layer equation of motion near the stagnation point.

The computation that must be ~de to solve a problem is simple
and rapid. It consists of evaluating a simple hbegral (reference 5)
from the given data and.using the results of th3 integrations tith
the standard tebles ta obtiin all the quantities that are of interest.

The method is shown to be suitable for the computation of the
separation point by the good agreement between the computed separa-
tion point and tilelmown separation petit for two cases: One, an
exact solutlon of the bcunaary-layer equations and the oiiher: an
exp@?hnen&Q detemnination of the separation pcint (rei?mence ~).

Hartree’s method.- The ~ose of Hartrea’a methti is to @ro-
vide an accmate methcd for the computation of all the oh&e&m?-
i6tics & the lti~ bo@~y ~yer, me ~Eiff of the,meti~~odis ‘
the integrati~ of tie boun@y-layere quation of mot;on by iile
replacement of the equation of motion, a partial differential equa-
tion, by’an equatfon”involving f’intted.ifi’erencesand ordhery “
derivatives. The only approximation used,,“otherthen those c&-
tained tithe
reylaced by a

boundar~-layer equation, is-that a derivative wybe
finite difference.

.-
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In order to compute the boundary-layer characteristics from the
given pressure distribution, the partial differential equation of
motion is replaced by an approximately equivalent ordin&ry differ-
ential equation by ieplacfig the derivatives with respect to one of
the variables by corresponding finite-differenceratios. The deriva-
tive with respect to tineother variable are integmted. either
mechanically or by some standard process for the numerical inte-
gration of ordinary differently-lequations- Derivatives Parallel
to the boundary are replaced by finite differences, ana i?teWat~on.
is cazwl.edout along successive normdi to the bounda~ at finite
intervals so that from the distribution of velocity across one
section of the boundary layer the distribution of velociti~a~moss
another section at an interval downstream is calculated. Th6 li@t
to the aocwracy obtainable with the method is.the amount of work,
which increases with the accuracy desired-

.

.

●

Crltlcal Remarks

Tho Pohlhausen method is umful for obtai~ing
tative info-i?ii%ionfor ei

floq_e_ra&QW_li.-
therya~orable. or adver~lxe~s.ure Sadient= ‘

~~’-~d~in~ti~qmntititi.ye inforlm
..—- .-

-U.ofi~Pr:faY9re31.ePresewe.
@?adients. Fal~-~~e–th~d seeu to provide sufficient cccuracy
for the solution of p~oblams,and to be rapid, EF@tree~s method is
potentially more important than any of theotheru because if the
computational work can be decreased the methqd can provide an
accurate solutionof tht3boundary-layer equatiom. At present .%lw
method is useful for providing sGlutions for testing app&OX~!?te
methods. ‘Themethods of references 6 to 2.2seem to be inferior to
l?alknar’srapid method for general use because they either take
much longer or are ~ot--soaccurate.

When rapidity of computat~on is of prime importance, the pcai-
tion of the separation point of the lamimu.bo@atiy layer may be
estimated by rep~cing the velocity distribution over the body In
the region of adverse gradient by a velocity distrfl.butionwith a
constant gradient. Approximate methods besed on the use of a
constant gradient may be obtained from the Potiausen method (refer-
ence 1, pp. Z08-lE), from the “vonK&m&-Mil.likan method (refer-
ences 7 and 8), and from the work of Eowarth (reference 6). A
method based on Pohlhausen’s work will USMIIY predict se~w’ation
too far downstream and the methods based on tho von K&&n-Mi.llikqn
Mthod till usually predict se~arertlontoo far upstream. The
accuracy to be e~ected from a method basod,on liow&th’s enct
solution is unknown but should be good when the ectual gcadient
is close to constant.
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Exact Solutions of Bmn5ary-Leyer Fg,uat!ons

Blasiw solution of boundery-layer ecmatlon for flow over a .
flat plate with zero pressure gradient.- The results obtained from
the Blasius eolution (reference 1, pp. ~-~) are

J+1 The thiclmess of the %okdary layer is propoz%onal
to XV Uo. .. .

(2) The drag coefficient based on the drag of one side of a
1.228

plate end the proJected area of’the plate is C~ = ~-.
&

(3) .T’he velocity ratio u/u. in the bcmndary layer is a

Howarth.- Howmth (reference 6) sulved the boundary-layer
equations of motion for the case of flow ever a flat plate with line
velocity outside the boundary lsyer deor,eastm~l,ine~ly in the direc-
tion of flow and with zero thickness of the lxx.mdsrylaye~ at tha
plate leading edge (fig, 4). The results obtained were

‘(l) The thiclmees of the boundary layer depends only on &JFo

end on
‘au x’

II
~ q.

(2) The velocity ratio u/U. in the bouncl=~ylayer depends

only on ~ ~don U’Z,

v’m~o IIdx %

(~) me local.sti=e-friction Coefficient To/~q decreased
from an extremely lar~e value at the leading Age to zero at the
separation point.

(h) The maw% of velocity recovery AU/U. before separation
(fig. k) is a constent end.is independent of the Reynolds number ~ml
of the rapidity with which the veloc’ityis reccwered, The rap5dity
of velocity recovery does not appeer beca~se the inlt.ialtiunla~y-
layer thictiess is zero. ,
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tin re’duced the complete equations of
disk in laminar flow to a syetem of ordinary

differential.equationsand”obtained approximate--solutioqs(ref%r-
ence 3) . The result% were

(1) ‘Theboundary-layer thic~ess is constant over the rotating
5dt~k and is _ = 2.38 -L. ‘
a \~ua’2

(2) The inflow veloc~ty gormal to and far from the disk

isc= o.708@.

(3) me turning moment requixed to rotate the disk for “both

3.68 ~3p ~E. ,s5.desis M = —

r
ua2 2 ,,
T

Cochran (reference 2) solved the system of ordinary differential
equations exactly by a nuinericalproce8a. As h any exact solution
of the equatinns of’motion or of the equations of the boundary layer,
no.definite boundary-layer thickness was obtainsd. The constaht in
result (2) for C was found to be O.~ instead of 0,708 “~ the
conutant in result (3) for M was found to be 3.87 ‘insteadof 3.68,

Conclusions frcm Frand%l boundary-layer eq,udim.- Useful
infornmticn can be obtained from the,Prandtl bourkary-layer equa-
tion as given by Fa~r in refereziceh without obtaining solutions
of the equation. The conclusions are

(1) For a
fixed point on

boundary layer

(2) For,a

fixed point on

fixed velocity distribution alon~ the body and.a
thebody, the nondhnensional thicloaess 6/c of me

r

T;oc”
is inversely proportional to y (fig. 5).

fixed velocity distribution along-the body and a

the body, the l.ocd s~face-friction coefficient ‘~”

is inversely proportional to g=~. The total drag

cient of the part of a body covered by a Iaminer bouzdary

/(

-..
therefore variea as 1 Rc.

2q

Coeffi-

layer
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(3) For a given vebcity distribution over
separation poizztis independent of the Reymolds

13

the bdy, the ‘
number Rc. This

fact is valuable in experimental work and in cases where computa-
tions of boundary-layer characteristics are made for m.we than one
Reynolds nw.iber.

(4) For a fixed velocity distribution alcng the body and a
fixed point on the body, the curve of u/U dgainst y/G Is
invariable an~ is independent of the Reynolds number. The curve

of UK against ~~ is invariable; this provides a gQod methmi

for testi~ whether a velocity distribution Is’laminer.

TUR3ULENT BOUNDARY LAMZRS

ti contrast to the emooth flow associated with laminar boundary
l.ayws, a IIIIXingflowis gene~elly associated with turbulent boun~y
layers. Zn a turbulent boundary l.syerthe momentum interchange
between adjacent fluid layers is caused mainl;,@ the irregular
motion of small fluid masses’. The itio-ti~I~ concerning turbulent
flow is largely empirical; ~tiereasthe information ffislminar I?mtion
Is obtained wholly ti”bmthe equatfone of motion.

Skin friction.- Empirical skin-friction f.ormulzwfor flow.over
smooth flat pbte,s w5.tlizero Pressme gradient.and for flow in ].ipes
where a small favorable ~resmre gradient efi~ts are available
(reference 1, pp. 135-154, and references 13 to 15). En+pitiical
skin-tiiction fmmulas tie also given by Goldstein in a British
paper of limited distribution, ‘Thesereferences uow that

(1) Fcr equal Reynolds numbers the turbubnt” skin-friction
coefficient is greater than the WW s~n-fri.ctim mfficient.

(2) The turbulent skin-friction coefficient decr6ases Jsss
rapidly than the lamfnar skin-friction coefficient as the Reynolds
number increases.

The turbulent skin-f~ic”bloncoefficient can be calculated from

()
the saZaerelation as for laminar flow To = w ~ if tie velocity

o ~’

profile is known inside the laminar sublayer, that is, the re#on at the
wall in which the velocity fluctuatio~ disappear and the flow fs kminar
(reference 18). An mstimate of the thicknes~ of the laminea’sublayer,
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based on data
5*U 11.6.~—
v

iT
To 2q
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from flow thvmgh pipes, is given by the relation

(reference 15),
,.

‘.

sharing stress.- No e=ct relatim is known between the’deriva-
tive of the average velocity at a point inside a turbulent bouqdary
layer and the sheering stress at the.point. The sbffcmceof this
information forces recourse to experimecb to qbbain itiormtion con-
cerning turbulent flow. If a reletion betveen the Loml ~heartr$:
stress and the derivative of the average local velocity is aesume<
a method for computing the chracteristfcs.of the turlnzlent.bo%dm’y .
layer may be devised. The method, howwver, will depend on the
assumption concerning the sheering stress.

From the funibmental relation for the shearing stress in turbu-
lent flow T = -pm (reference 1, pp. 119-134, and.reference 15),

.

Prandtl derived the ruixing-lengththeory, an apprete theory that
relates the local shearing atjjessto the local density> khe local
derivative of the avoragevelocity, and the local value of a so-called

.

011mixing length 7 (reference 13). The equation 1s ? = P22 z A .
by ay

The mixing-length theory is based on the fact that if two adJacent
layers of fluid have different velocities, the interchange between
the two layers of small masses of fluid that have the velocities of
the layers from which they come till tend to equalize the velocities
of the fluid layers. The tendency toward equalization of velooitfes
may be considered as being ca~ed,by an apparent shearing stress.
between the two lkyera, Von Kerhan (reference 15) obtained an
approximate e~ession for the rnixin,~ len@@h as a function of the
local velocity derivatives.and a universal constant by assuming
that the process of tmbulence at any two points is similar and
differs only in the length an~time scales. The relation can be
used to compute a velocity distribution in pipem that agrees very
wll @th the experimenti.1velocity distribution,

Boundary-layey velocity profile”.-The velocity profile for the
turbulent boundary layer diitiersmarkedly in appearance from the
velocity profile of the Ls@nar boundary layer (fig. 6).. At large
boundary-layer Reynolda numbers the turbulent velocity profilo shows
~ etil?~ly rapid rise.tn velocity fn a very short distance. ~hjs
large slope at the nll oauses the turbulent Mcin-wlction coeffi-
cient to be higher than the ~~r skin-friction coefficient.

When the ~ressure gradient along the surface is zero or very
slightly favorable, such as on plates or in pipes, the velocity

.

.
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.
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.

profile can be approti?mted by a-lxgwi%bnic curve. ~lleequation
is (reference 12)

and followB from the assumptims that the shw.ri~ stress is conctarit
across the Tipe or boundary layer and equal to the wall ~fie=~

streqs and that the mixing length is given by the equation

z =%-

For a wider range of pressme ~adients incl~ding those which are
adverse (that is, thfisein which t~.es@tic pr~ssure rises in the
direction of fluw), the velocity profile can be approximated by a
power curve

u’ ~ l/In
—= (),U5

Both of these equations for the velocity dist$?ibutionbecame inaccu-
rate at dtstances from the wall cozapzcrahleto the thic~ess of:~e
laminar sublayero At the wall both equations incorrectly give
infinite values of dujdy.

E the flow continues in an adverse premure, gadiixr$the
velocity profile undergoes a change from one having high velocities
near the swf.sce to one having low velocities near me surface
(fig. 7 and reference 17). ,

For imme purposes it seems permissible to assum~ that”the
turbulent boundary-layer profiles form a single-parameter famifi~

of curves and to.use the ratio H = 3*, or the velocity ra~fo u/U

at some fraction of the boundary-layer thicbess fl?omthe surface,
as the parameter. The turbulent yelocity profiles usually found b
undisturb~ flow are eiqle curves and may be specified by any one
of a number of suitably chosen parameters. The suggestion thet
turbulent boundary-layer profiles form a single-pai’ameterfami’lyof’
cmves first appeared in a paper by Gruschwitz (reference 18) in

2 .,

()
which the fector VI = 1 - ~ was used as a parameter.
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Separatism ~oint.- In an adverse pressure aa~jont the turbu-
lent boundary layer wi3.Zeventually seperate. For similar condi-
tions, however, the percentage of the ititial -C prewlnse
which can be ccnvsrted into statj.cpressure in flow gvor Eurfaces
covered by turbulent boundary layers is greater thnn inflow over
m.urfaces covered by laminar boundary layers- Bocaum the mixin~
between the innxr and outer layers of fltid is much greater in e
turbulent boundary ?.ayerthan in a latinar boundaq I.a;erimore
downstream momentum is transferred..&am the outer layers of fluid
to the inner J.6yersof flui,d..Yhe downstrqem nmmentum of the “
fluid near the wall in turbulent flew Is therefore maintained in
~~b the*timun_Ux@ljmJ.n.of .lmar .flQww~dd ~~
exhausted by the surface .shegmand separation would OCCW.

,. .”.

Only onrpiricalmethods are available far estimating the
separation point of t~b,ulent boundary @era. Of all tie methads
(referpnce,1, pp. 155-162; references 17 to !22; and Garner ‘Bmethod
which is given in a British paper of limited.distribute.on)the two
which seem to be most useful icr jzred!ctiriCtho b.havior i?fthe
twrbulent boundary-layer are those Gf Garner and reference 1~. The ‘

.

Gruschwitz method {reference 18] introduced.~e j.d.eaof a s@l.e-
parameter fqmily of curves for me velccity profiles of the tuAbu-
lent boundary layer and made -therate cf Ch.anfioalcmg the surface
of’the ~hape parameter rather t-banthe shape yrw%er itself depend
on the loca).<co.nditj.ombut did not make yossible the cm.putatlcn
of the separation point with sufficient accnracy for ongineertng
use (reference 23). An attempted improvement of the.Gr-acchwitz
method by Kehl (reference 20) has not been tested l?mr,itsability
to predict the separation point,

The method of reference 17 seam to be the most relta’blem~t.hcd
available at present for the eetinztionof the separation yoint of’
the turbulent boundary layer. The method uses two equa’dcms to
determine the bdmvio~ o~ a turbulent boundary layer. The fizwt
equation iEIthe von Karnwnmmentum eqr@ion (equation (2)). !l!he
second equation is an empirtwl equatton,othat @ves the.rate of
change of boundary-layer shape prsmeter along the surface as a
functton of the local conditions. The equation tpr W-e Tate. of
change of’howdary-uyer shape parameter was dev+lcpod in the
foil.owing manner:

It was flint +ified that for the experfi.=:%’.ltits ava:.lable,
the”velocity profiles of the turbulemt bowqdary b~er formed a,
Single+parameter$a@.ly of’ewes idth H = .f(ql) as the parameter.

The .astiumptionwas then:made that,the rate @f change of boundary-”
layer shape paramet~ i~ a function of the ratio of the local
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,.e“@ -&).the’@xll”” Skiix-f$ictioilpressure ~adieni .-—.,
!L~a gq

and also to the local value of H. The ratio ~ti.- fon

1...

coe~ficierrt To 2q
{.,.

him the same
.. “lOJ=% -..,:-,“’ -.:

phyelcal significance es the parameter X In We P(lh,~AUsentiti~ i
@ aq

The quantities ~ ~ ,and H “were determined fr+xhtine’a~.eila~le “,
,.

experimental data; the term To/2q waa calcul~tea mm, the ,pk:?-

friction formula of reference 24. .mom a~~8i~ Ot’t~b 6~J@’imenti~
~.: .. . . :

data, the variation ot 13—~ ~th ~~~q a~ ~ an bp repre-
q ax ‘rO

sented by the equation . ..

Equation (3) is solved slmultaneoud.y with the von ~’=’n momentmn
equation by numerical methods. For a fix=d pressure distribution
and transition point the me~dod indicates a sl:.~t forward moveuant
of the separation point @_th increase in Reynolds.number.

The method of Garner differs ircm that of reference 17 only by
the use of a different empjric~l skin-fricticn rebtion and by the
use of clifferent constants’in equation (3).. The differerltconstanta
were obtatied by an.alyz@ the e~erimental data in reference 17
and adding a small amotit of Wta from experlmonts by Bii and
Nikuradse.

None of’the ?nathcdagive any informatim on the variatim of
stiface friction ‘withb’bunlary-l.ayerprofile”shepe; all use”eqirical
skin-fricti~i fgrmulas derived &cm @er~ents ti-thflat pfites.

.&@wmaln thiclm+! .- ~ approximate method fgr “tie ctiputstion
of boundary-layer monienturathicknesses that is useful for the esti-
mation of full bountir~-lay6r thiclcaessesand profile-Lveg qoeffl-
cients whmn flo”wseparation is not ~nvolved is ~ven in ref8rmce 25q
The method is based on the fact thet if H 2s fixed at an avera~e

Ta
value and that if a skin-titction &quatio+lof the foym -..

2q,’
is used, the von =Zn momentmn e~uation can be i.nte~ated.
result is a Yormula for the computation of: % .in flcws with.,..
sure gradients,

. ,. .
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The dame tme of f~ is applicable tO w~r bol~dary
layers when the average velocity gradient is small. The formula
for laminar boundary layerH haa also been g$ven in reference 26.

Roughness,- Ihnpiricalskin-friction formWae fcr flow over
rough flat plates and for $’low@ rough pipes are available for
certain types of roughness (ref&rence 1$ P3?*145-154 afi refer-
ences 2, 15, and 27}. A characteristic of the flow over roug~
surfaces with zero or mall pressure gradient is that t,eyonda
certain Rsynolds number, which depends “onthe roughness~ the skin-
frictlon coefficient becomes independent of.the Reynolds number
(reference 28), The skin-friction coefficient of rough rotat?.ng
cylinders (reference 30) was found to become constant at-suffi-
ciently large Reynolds ru.wiberafor a saturation density of roughnes~
particles. For nther than saturation densities, the drag”coefficient
was concluded to de~ease with Reynolds number.

The additim of roughmss to a surface covered by a turbulent
boundary layer increasea the drstgcoefficient when the roughness
hei@t becomes comparable with the height of the lminar sublayer.
The addition of rou@neas to a slwoth plate till have no efi%t on

r
the surface friction if R; To ~

~~<32
./

where To 2q is the surface-

friction coefficient for th; smooth plate (reference 30)t

TRANSITION

A body in a s’treamuw.dl.y has a larninfirbcnindarylayer for
some distance from the stagnation point and behind the I-aminar
boun(iat’ylayer, a turbulent~oundary layer that exkende to the
trailing ed~e. The process of cha~ of the Mminar boundti layer
to the turbulent boundary layer is km.owrIas transition. The appear-
ance of the turbulent type of flow can be detecteilWJ the appearance
of randm fluctuations in the velocity components, by the change in
velocit~ prof’ilefrom one having a ~adual increase in veloci~
with distance from the walls to one havin~ a.much more rapid rise
In velocity (fig. 6), and ky the increase in skin-i’rictiuncoeffi-
cient; a greater increase occurs in pkin-friction coefficient at
large Reynolds numbers than at small Reynolds nu@er~.

Tileflow conditions that a~e favorable for the delay of trmsi-
tion are: a,small Reynolds numlm?, freedmn from disturbances, and
Static yresmre decreasing in the direction of flow (referencm 31
and 32). An investipjationof the effect of curvature (reference 33)
results in the Zollowing conclusions: !lhemechanism of tran~ition
W di%ferent on concave and convex walls, the -transitionpoin=s
not affected by convex curvature, csoncavecurvatu’e has a strong
destabil@ing effect, the influenco of prcmsure @adient on transi-
tion on a concave wall is negligible, the effeot of presmre gradtent

,. . .
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on transition on convex walls is strmgeat neer zero.presti~:c+
gradient, and stream turlxd.enseh~s about tQe same effec% m trune+.-
tion for fl.wwover concave and convex walls.

Then the static preEsuro increeses in tho direct:on of flow,
the “maxi?numpos~ible lmgth of laminar flow is.ti-rj~dist~ce tetween ~!
tile min+muu pressure pofit and the ~~min~r separation yaint. Whether ~,
transition or laminar separation occurs first flopmd~ on the Reynolds ~:,
nmbek ~ the disturbances to the flow, and the ciren@h of the adverse [!
pressure gradient. .4sthe adverse pressure gadiant becomes mdler, “
We likelihood cf transition occurring befcro sopareticm becomes
greater; the flat pkte represents ‘be etiepla case in which BePare- :
ti..lih3W3roccurs.

The instability of tinelmalnar boundary la~w on a flat pl.ato
has beer.~mveetigated theoretj,cally(reference 34) and the ossentiab
of the theorwrhave been vezzif’iedoxpevixntally (reference 35). A
process for the cczqputntionof the ins~bility point of the lamlnar
boundary layer in the prefienceof pressure ~edicnts, tith examples
of’the res~ts for ~irfoi~, ?-g@-ra ~ refert3nce360 Because it
takes some distance for the l.aminarflow to becom tur-bulentafter.
passing the instability point, the transition point is dcmnstrem
of the instability point. A co~ariso~ between the expar:.mental
transition points and the theoretical instahilit;-pcinte for an
NACA sirfoil is given in references 36 and W. The comparison ~howe
that, as is expeoted.fi~ the theory, a decreasing atmtic.pressure
in the direction of flow causes the dia~.ce bdmmen tlm &steLility
and transition points to increaee srii&l.so,c~usea the hatablLity .
point tt~nmve farthqr do~tr~m ~t a fixed Reynolds nmnher.. “

. . . .

RECXONS 03’SEE’WEU FLOW ON KE?J’01H5 . ‘ ‘ “

,,

At mffici.ently small airfoil Reynolds nwihers a region of
separated flow is often found that has for its forward boundar}”thQ
lminar separation point and for its roarwavd bm.adery a tmnil.ent
boundary layer (references 38 to 40). The wual plecea.~f .occti-
ronce of the regim of saparated flow azzenear the lemi3ng dga of
abfOilS at hl~h angles af attack and behind the ]fd.n?L~]~ prOSE:~e
point or~airfoils %~lichhave exljemtj.veL-minar Ioundwy l=yera.

Only qualitative infcmnwtj.onis avaijable c~cerrfii~ tlw extent
*of the region of separated flow. The flow cen reattach itself to
the surface as a turbulent boundary layer at some sm’.lldistance
behind the point at which the lam.inarbaudary layo?~lea~’esthe
mrf~ ce. The etient of the region of separated fi:>~lying between
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the Euuinar and turbulent
decrease-with an increase

The formation of twbulent velocity f’1.uctufitlonsin the fluid
l.ayeraithat are mmring downstream and that are Juwt a%ove the re~.m
of separntbd flow is believed to km important in t;lofo~%ion of a
turbulent boundary:layer behind the r@on ~t aep-mated flow. . ‘

.. ... . . .

FROFlW3-DRAG COM?UYAWIGH

The method -f prof’i.le-dra~computation 5s based on thti mmcntum
theorem whi~ may be,stated as follows: In a steady flow Wj.thoui
body f’orcesthe net external force acting in a psrticulai’Mx’ectioh
on the surface bounding e fixed re~i,onof fluid in equal in ma@tude
to the difference he~ween Vao time rate of owtflow and time rate of
inflow of’momentum in tha dipeckicm under considerationand has the
sense in ~ich the momeutum decreases.

The profile dra~ can therefore be determined If- the differerice
between the time rate of cmtflow and time rate inflow of mometitwn
in the Mrection of f.li.~rtcan be determined.fm a mgim of’fluid
bounded by the bo~ and.a surface w%fch has e shape and dietance
from the body m chosen that the premh.n-esproduce no rosultan-t
force cm this mxrfaca in the line of flight diroctim. Squire and
Young (re~erence 21!)determ3.nethe p~oflle drac by cmput~ the
rr.tcmmntumthy. cdmegs at the airfoil -truilingcage,fr~m the von ti~”n
momentum equation.:then by the use of the Ton l%rman momelrtw equa-
tion together with an assumption concerning the V6hJd&~ profile
aorosg the wake they cczrputethe momentm thickness very far ‘beh@d
the body. The profile-dreg coefficient is known once the momentum
thiclime~s,and ‘terefore the momentum defect, is ?.mownve~ “fur
behind the body.

,.

The E@uiro and Young Q@hod IS mccuratm to within a f~w percent
if no regio~ of separated flow .we present end fi’tho h%noitton
point is known. It must bo emphasized.that the profile-drag ccmffi-
cient can be computed only when the tranaition point id lmown and
that the profile-tia~ coefficient ia mns?.ttve ta the positl:x?of
the transition point.

:. .
,,‘1

.

.

.“ . !,
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Pn?E FLOW

.

.

.

.

The sub$ect of flow tnpipes hea lxmn studied e*ustivelY and
the knowledge of the su7qjectmay be frond in many wmlm; for exnmpJ.e,
references 1, Z?,and1!30 The steady leminar flow in & pipe can be
computed directly from the equations of motion. Xnclud.edere the
pressure-drop f’ormulasand the velooity profile (reference 1,
PP* 36-39) ●

The lmowledge of turbulent flow in pipes, Uke that of t~bulent
flow over bodies, is based on eqerlmentt The Pressme-drOP f’o-rm~s
have been determined from flow experiments with smooth-wU and
rough-wall pi~es (reference 1, pp. ls~-lk~,and references 2 and 15).
Universal velocity-distribution formulas have been determined for
flow in smooth and rough pipes. ,

The miting-lengbh theor$es of J?randtland von~’- ~ke
possible the computation of the velocity distribution across the
pipe when the surface friction is known..

3xmmsERs

A diffuser is a duct having an internal area that Increases
with Ustance downstream. Beoause of the increasing area, the flow
velocity in the diffuser deoreases ti.thdistance downstream and
therefore the static pressure in the flow increase!si

A purely theoretical treatment of lminar flaw in a two-
dimensional diffuser is given in reference 2, which statea thmt the
results are of theoretical interest only.

The literature for dtffusers with turbulent flw is extensive;
but because no theory of twbulent flow haa been established.for
diffusers, the work of the variow exqxmtmentsrs (for example see
reference 41) has not resulted in the abiUty to predict the beha~%x’
of a @ven diffuser with a good degree of certainty,

mEi3”mmGEmcE-

A free-mixing process is one in which solid boundaries play no
Part. Some ezmuples of cases in which free-mi.xingprecesses occur
are jets, wakes,
velocities meet?
in references 42

and regtom tn which parallel streams of different
The cases of Wrlmlent-mixlmg proosss~, treated
to 49> are based upon an assmption relating the
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local shearing stress to the ch~acteristica of the local velocity
profile. The eqvwti.onsand assumptions of these references are

(1) The equation
(far frcm

(2) The e~uaticm

of motion with zero fhatic-pre-smtregradient
bodies)

of continuity

(3)The fia~tl equation for the sheering stress

II~=ptzikau ——
ay~”

(4) The mixing length Z ~oportional to the width of the .
mixing regicm”

The oaees treated in reference .46use for the shearing stress the
equation

(5)

instead of 7 011. ~z2’~u au

by F;
. The sharpnese of tl.wcalculated

velocity profiles at extreme values of u isellmi~+=d by usi~
equation (~) instead of equation (4) but no better Undorstandj,ngof
the flow process results.

Turbulent jets and wakes W turlnzlentflows in the presence of
boundaries have also been analyzed by considering the velocity and.
pressure fluctuations in the flow. An introdnctim to “thismethod
of inveatigati.onis given in reference 47.

EFTECtCOFBOUNIMRYLUEWON PGTENIUL-TZOW

cBXRAcTERIsrIcs CmAmFCmX

Airfoil characterj.stiescomputed by potential-flow theory am
klown to differ from the expertientally dete~nei ~b~acte~i~tics.
The deviation from the potentfalyE’1.owcharacteriwbicuappears not
only in the existence of a profile drag but also in changes in the
lift and pitchin~-moment characteristics. me chan~es me caused
by the presence of the boundary layer and usually increase with
increasing boundary-layer thich.ess.

—

.

.

.
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The basis of the method of cmqputatim of referen~e 48 ~s
Taylor’s theoren which states that equal Positive and fie~tive
amounts of vcirtlcityare shed from the airfofl trailing edge per
unit time when the lift is steady. The method of computation ~f
reference 48 in outltie is approximately as fo~cws: The potentia2.-
flow velocity distribution over the airfoil is fo~dj ELsuitable
fairing is mde at the trailing edge if necessal’yix?avoid a
stagnation point. The boundary-layer thiclmesse~ au the traili~
edge of the upper and Zower surfaces are determtne~ a,fterchoosing
the transition point and the ~e~ol~ number. The velocities at
the edge of the u-pper-surfaceand lowsr-s-mface boundary layers et
the trailing edge are then co~utedj when these,velocities are known
the pressure rise through the boundary layer is estmted for bobh
upper and lower surfaces. Ii?the pressure at Mm Wailing eQe is.
not the same for both upper and Iowem ~Wfaces, Taylor’s theorem
is Violatedj the circ~~jon is therefw6 adjuted. findthe prOc@~O
repeated until tinepressures ere equal. At pretien%the competitions
are too lengthy and.,without empirical correction factors, are too
inaccurate fm routine ~~e.

lkn@leyM@norial.Aeronautical &bOratory
National Advis~ Committee for Aoronauttcs

LangleyField, Vs., May21, 1947

.

.
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2WF’NNDIX

,, ...,

,dA!rImm ICAL IEKCVAT?J3NS ~
...

~ Prand.tlBmndary-Laysr Equations

The equations of motion in Cartesian coordinates for incom-
pressible flow are as fd.lows:

The equation of motion “for‘x-dtiection Is

,

The equatian of motj.onfor y-diroctlon is ~

The equation of continuity is

For thQ bOUnd~y
layer equaticns;

layer, the equations becoue the IWmdtl bourulary-
ihue

(Al)
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Equations (Al) and (A2),-qe
across the thi.dmess of the
boundary-layer thickess to

vQM yhen the presmre IS .co:~t.znk
bcxznd~ lq’er, when”tineratio ot We
the curvature of the surface is .

negligible, and men all viscous terms tiolving either v or
derivatives with respeot to x aye negligible. For flow about
airfoils at no-l ~n@.e~ of’~tta.ckand abaut ylates at zero angle of
attack these cond,iticmg.are accurate ovm inostof the length of
the surface. Regions where the conditions may not be accurate are
in the vicinity o#’stagnatlo~ potits and h the vicintty of the
separation yoint!

Derivation

\3?

continuity

The mass leavi~ box abed equals the maas entering box abed.
The mass entering per unit ti~ through ab is equal to

/

5

Pu W

o

Wze -ss leaving per unit time through cd is equal *Q

[

5

r

5

@y+Axk
dx

(m dy

o to
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,. .,

Application of Mommtvm Theorom

The net change in momeqtm per @t time i.nth,e~-~e~tiO~
equals the net force ac”tihgto ri@t” an box in the x-direction.
The x-mamentum enterfn@ per unit time through 8b is gimn by

The ‘x-marmntm entering per unit time Umx.z@ hc is ~iven by

The x-momentum leaving through cd t%’given by

Net Excess of x-Momentum Leaving te Right

over That Entering from Left

The net excess of x-momentum leaving to right over that
entering fkom left is given by

.

.

.

.
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Net Forces Acting to Right on Box

The preaeure actin~ .%othe right on

Axp5+p — sin
Cou a

the box in given by

a

The pressure acting to the left on the box is ~tven by

The skin friction to the left on the box is givenhy ,.,.

To Ax

Therefore,the net force acting to the right on the box is given by

dp8
@+pAxtana-pa ‘—ti-To~Y

dx

Then, since the net change in nommtum in the x-diractlon
equals net force acting to ri@t on box,

where



28 NACA TN No. 1384

Then

or

After the definitiime

and

have been uffed,equation (A3) can be written as. ‘

~ au’%.~*!22+’r
--zI- dx”

(A4)

If the equation d’ motion for Inviscid flow that is true uu@ide
dy

the boundary layerf — = - QU ~,

split into two termn,%quation ~h)

(H+2:X+e —
u

dU% ~eis used.and the term —
dx

oan be written es

.

.
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The von =n equation is often
the .Bernoullleqpation to re~atp

29

OUtSide the boundary

written as

Dertvation of

d8+H+26dq ‘O—..
dx2 qax = g.

the E~ression fm the Velooity Fttofile

in the MQhausen Method

I.& the boundar.y-layw”velocity prortle be given by e fcnrrth-
degree polynomial

L

The
taken by
that all

values of the coefficients are determined frm the ?orm
the equation of’motion at the WE1.1and from the assumption
viscous effects ~e cOtitied to a thin boundary layer.

At the wall, u = v = O, and so the equatj.onof motion

“( au au~
)

a%,,
P uT-+v--=-’=Fp ---

dx ay ax a32

becomes

Because all viscous effects kre ass-d to he absent outside

the boundary layer, T . — = O outside the boundary layeY. There-
:

au au a2u. ~fore, at y = 8 with T = p —, It follows that — . —
% %a~”

From the defi.nittonof’ 5 it also follows that u = U.
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a . U(E +x)

68

u{6 - x)
d.= --

664

82 im
where A, the velocity profile Dhaye yarametbr, eg,ua~ — —. The

Udx
e~reasion for the velocity yrofile thoreforo beccmes c

,()atl
and the surfs.oeshe~ing strese To = .W‘- iu

:JYy.o

‘o
Ulz!+h- ——
5 6

A

.
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or

‘o 1? 3.2+”A

g- ‘= 6

use the definition of >,

and
,.

d.p
—= -@U@
dx dx

It follows that

Then, from
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allaso

2qa@~cc,—_— —
To 2q dX

or

To show that A is independent of Rc

but (see p, 13)

therefore,

NACATNNO. 1384

Consequmtly when the pressuzze dfstrihrticm does not change with Rc,

X is independent of Rc.

-,

.
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Figure 1.- Velocity profile.
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Figure 2.- Boundary layer.
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Figure 4.- Velocity distribution. (See reference 6.)
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Figs. 5,6

Figure s.- Boundazq=layer
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FSgure 6.- Flat-plate turbulent and laminar velocity profiles.
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Figure 7.- Effect of adverse pressure gradient on velocity profile
of turbulent boundary layer.
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